Decompositional Construction of Lyapunov Functions for Hybrid Systems

نویسندگان

  • Jens Oehlerking
  • Oliver E. Theel
چکیده

In this paper, we present an automatable decompositional method for the computation of Lyapunov functions for hybrid systems with complex discrete state spaces. We use graph-based reasoning to decompose hybrid automata into subgraphs, for which we then solve semidefinite optimization problems to obtain local Lyapunov functions. These local computations are made in a way that ensures that the family of local Lyapunov functions forms a global Lyapunov function, proving asymptotic stability of the system. The main advantages over standard LMI methods are 1) improved numerical stability due to smaller optimization problems, 2) the possibility of incremental construction of stable hybrid automata and 3) easier diagnosis of unstable parts of the automaton in case no Lyapunov function can be found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Decompositional Proof Scheme for Automated Convergence Proofs of Stochastic Hybrid Systems

In this paper, we describe a decompositional approach to convergence proofs for stochastic hybrid systems given as probabilistic hybrid automata. We focus on a concept called “stability in probability,” which implies convergence of almost all trajectories of the stochastic hybrid system to a designated equilibrium point. By adapting classical Lyapunov function results to the stochastic hybrid c...

متن کامل

Decomposition of stability proofs for hybrid systems

The verification of hybrid systems, encompassing both discrete-time and continuoustime behavior, is a problem of rising importance. Hybrid behavior occurs wherever a digital system, operating in discrete time, interacts with a real-world environment, which evolves in continuous time. One desired property of hybrid systems is global asymptotic stability. A globally asymptotically stable system c...

متن کامل

Stability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations

In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....

متن کامل

Construction of strict Lyapunov function for nonlinear parameterised perturbed systems

In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.

متن کامل

Nondecreasing Lyapunov functions

We propose the notion of nondecreasing Lyapunov functions which can be used to prove stability or other properties of the system in question. This notion is in particular useful in studying switched or hybrid systems. We illustrate the concept by a general construction of such a nondecreasing Lyapunov function for a class of planar hybrid systems. It is noted that this class encompasses switche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009